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Abstract

Recently, we demonstrated that (F )-3,4-methylenedioxymethamphetamine (MDMA; ecstasy) was reliably and dose-dependently self-

administered by previously drug-naı̈ve laboratory rats. The neurochemical basis of MDMA self-administration has not, however, been

extensively studied. The present study investigated the role of dopamine inMDMA self-administration and hyperactivity. Pretreatment with the

D1-like antagonist, SCH 23390 (0.01–0.08mg/kg) produced a dose-dependent attenuation ofMDMA (20.0 mg/kg)-produced hyperactivity. In

self-administration tests, the baseline rate of responding maintained by intravenous infusions varied inversely with MDMA dose; as the dose

available was changed, responding also changed so that about 10.0 mg/kg MDMA was self-administered during each daily 2-h session.

Pretreatment with SCH 23390 (0.02 mg/kg) produced a rightward shift in the MDMA dose–response curve. These findings suggest that

MDMA self-administration, like self-administration of other drugs of abuse, is dependent on the activation of dopaminergic substrates.
D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Self-administration of psychoactive substances by labo-

ratory animals has been widely used to investigate factors

that contribute to drug taking. Virtually all drugs of abuse

are self-administered by laboratory animals and the pattern

of self-administration is comparable to the pattern exhibited

by humans (Griffiths et al., 1978; Spealman and Goldberg,

1978; Deneau et al., 1969; Schuster and Thompson, 1969).

There has been a massive increase in the use of (F )-3,4-

methylenedioxymethamphetamine (MDMA) and the drug

clearly has abuse potential because a high percentage of

users met DSM-IV criteria for either dependence or abuse

(Cottler et al., 2001). In contrast to other self-administered

drugs, however, only a paucity of studies in laboratory

animals has examined the positively reinforcing effects of

MDMA (Schenk et al., 2003a,b; Braida and Sala, 2002;

Fantegrossi et al., 2002; Ratzenboeck et al., 2001; Lamb and

Griffiths, 1987; Beardsley et al., 1986). MDMAwas reliably

self-administered by drug-experienced (Fantegrossi et al.,

2002; Lamb and Griffiths, 1987; Beardsley et al., 1986) as

well as by initially drug-naı̈ve (Schenk et al., 2003a,b;
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Braida and Sala, 2002; Ratzenboeck et al., 2001) animals,

but little is known about the underlying mechanisms.

MDMA interacts with a number of neurochemical sys-

tems but most studies have focused on the role of seroto-

nergic mechanisms and its behavioral effects (Bankson and

Cunningham, 2001, 2002; Iravani et al., 2000). The dis-

criminative stimulus (Baker and Makhay, 1996; Schechter,

1991; Nichols et al., 1990), motor-activating (Bankson and

Cunningham, 2001; Kehne et al., 1996; Callaway and

Geyer, 1992; Callaway et al., 1990), conditioned-reinforcing

(Fletcher et al., 2002b; Bilsky and Reid, 1991) and anxio-

genic (Scearce-Levie et al., 1999) effects of MDMA have

been attributed to its ability to increase synaptic levels of

serotonin (Cole and Sumnall, 2003).

MDMA also increases synaptic levels of dopamine via

direct inhibition of the dopamine transporter (Iravani et al.,

2000; White et al., 1996; Nash and Brodkin, 1991; Yama-

moto and Spanos, 1988) and secondary to its ability to

increase synaptic serotonin (Bankson and Cunningham,

2001; Koch and Galloway, 1997; McCreary et al., 1999;

Obradovic et al., 1996; Schmidt et al., 1994). The ability to

increase synaptic levels of dopamine is a common charac-

teristic of drugs of abuse (Di Chiara, 1999) and self-

administration is sensitive to manipulations of dopaminergic

systems (Bergman et al., 1990; Watkins et al., 1999;
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Beninger and Miller, 1988; Caine and Koob, 1994; Phillips

et al., 1994; Corrigall and Coen, 1991; Hubner and Mor-

eton, 1991; Benniger et al., 1989; Corrigall and Vaccarino,

1988; Koob et al., 1984, 1987; Pilotto et al., 1984; Hanson

et al., 1979; Yokel and Wise, 1976). In order to determine

whether dopaminergic mechanisms also mediate the rein-

forcing effects of MDMA, the present study examined the

effects of the D1-like receptor antagonist, SCH 23390, on

MDMA self-administration and compared them to effects

on MDMA-produced hyperactivity.
2. Methods

2.1. Subjects

Subjects were male Sprague–Dawley rats bred in the

vivarium at Victoria University of Wellington. Rats for the

self-administration experiments were initially housed in

hanging polycarbonate cages in groups of four to six per

cage, but once they reached weights of 250–275 g, they

were individually housed. Rats used in the locomotion

studies were initially housed in pairs but were separated

on the day prior to testing. The humidity- (74%) and

temperature (21 jC)-controlled animal colony was main-

tained on a 12:12-h light cycle with lights on at 0700 h.

Food and water were freely available except during testing.

All procedures were approved by the Animal Ethics Com-

mittee of Victoria University of Wellington.

2.2. Surgery

A Silastic catheter was implanted in the right jugular vein

under deep anesthesia produced by separate injections of

ketamine (60.0 mg/kg ip) and sodium pentobarbital (20.0

mg/kg ip). Briefly, the external jugular vein was isolated, the

catheter inserted, and the distal end (22-gauge stainless steel

tubing) was passed subcutaneously to an exposed portion of

the skull where it was fixed to embedded jeweler’s screws

with dental acrylic. Each day, the catheters were flushed

with 0.1 ml of a sterile saline solution containing heparin

(30.0 U/ml) and ampicillin (250,000 U/ml) to prevent

infection and the formation of clots. Behavioral testing

began following at least 5 days recovery.

2.3. Apparatus

2.3.1. Locomotor activity

Locomotor activity was measured in eight Perspex-lined

open-field chambers (50� 50� 20 cm). Each chamber was

equipped with a bank of eight LEDS on each wall (5 cm

apart, 5 cm above the base). The chambers were interfaced

with a computer that recorded each beam interruption.

Testing was conducted in the dark between 0900 and

1700 h. Immediately prior to each test, the boxes were

wiped down with Virkon S (Antec International).
2.3.2. Self-administration

Self-administration testing was conducted in a humidity-

(74%) and temperature (21 jC)-controlled laboratory. Each

of the 24 operant chambers was equipped with two levers

and a stimulus light (Med Associates, ENV 001) and was

enclosed in a sound-attenuating closet. Depression of one

lever (the ‘active’ lever) resulted in a drug infusion. De-

pression of the other lever (the ‘inactive’ lever) was without

programmed consequence. Infusions were in a volume of

0.1 ml delivered over 12.0 s via Razel pumps equipped with

1.0 rpm motors and 20.0 ml syringes. Coincident with each

infusion was the illumination of a stimulus light located

above the active lever.

2.4. Procedure

2.4.1. Locomotion

Initial tests measured the effects of SCH 23390 on

MDMA-produced hyperactivity. Preliminary studies (un-

published) indicated that MDMA-produced hyperactivity

(5.0–20.0 mg/kg) was dose-dependent and that higher doses

produced adverse effects in a number of rats. In order to

allow observation of a dose-dependent reduction in activity

following administration of the antagonist, the present study

examined the effects of SCH 23390 on hyperactivity pro-

duced by 20.00 mg/kg MDMA. Separate groups of rats

(n = 6/group) were injected with SCH 23390 (0.01–0.08

mg/kg sc), or the saline vehicle and were immediately

placed in the activity boxes. After a 15-min period, they

received an injection of MDMA (20 mg/kg ip) and activity

counts were measured for an additional 60 min.

Additional groups of rats were tested to determine the

effects of SCH 23390 on baseline levels of activity. For

these tests, rats (n = 8/group) received an injection of SCH

23390 (0.02 mg/kg sc) or the saline vehicle immediately

prior to being placed in the activity boxes. Activity counts

were measured at 5-min intervals during a 60-min postin-

jection period. This dose of SCH 23390 attenuated

MDMA-produced hyperactivity (see Results) and these

additional groups were therefore tested to determine wheth-

er the attenuation reflected a generalized decrease in motor

activity.

2.4.2. Self-administration training

MDMA (1.0 mg/kg/infusion) was available for self-

administration during daily 2-h training sessions. This dose

of MDMA was chosen based on our previous findings of

acquisition of self-administration within approximately 10

test days (Schenk et al., 2003a,b). Each session began with

an experimenter-administered infusion of MDMA. Thereaf-

ter, infusions were delivered according to an FR-1 schedule

of reinforcement by depression of the active lever. Depres-

sions on the inactive lever were recorded but had no

programmed consequence. Self-administration was consid-

ered acquired when during a session, (1) at least 10 active

lever responses were produced, and (2) the ratio of active/

stry and Behavior 77 (2004) 745–750



Fig. 1. Effects of SCH 23390 (0.08–0.00 mg/kg) on MDMA-induced

locomotion. SCH 23390 was injected at time 15 min and MDMA was

injected at time 0 min. Symbols represent the mean number of activity

counts (F S.E.M.) as a function of SCH 23390 dose and time. Insert: total

activity counts during the 60-min period following the injection of MDMA

as a function of SCH 23390 dose. * Indicates significant ( P< .05) decrease

in activity relative to the vehicle (0.0 mg/kg) condition. (a) 0.01 mg/kg, (b)

0.02 mg/kg, (c) 0.04 mg/kg, (d) 0.08 mg/kg.

Fig. 2. Effects of SCH 23390 (0.02 mg/kg) on baseline locomotor activity.

SCH 23390 or the saline vehicle was administered at time 0 min. Symbols

represent the mean activity count (F S.E.M.).
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inactive lever responses was at least 2:1. When these criteria

were met for at least three consecutive days with less than

20% variation in active lever responses across days, the

MDMA dose was reduced to 0.5 mg/kg/infusion. Training

continued until there was less than 20% variability in the

number of responses produced across three consecutive

testing days.

2.4.3. Effect of SCH 23390

Once self-administration responding was stable, tests

were conducted to assess the effect of the dopamine D1-

like antagonist, SCH 23390 (0.02 mg/kg sc) on responding,

maintained by a range of MDMA (0.25–2.0 mg/kg/infu-

sion) doses. This dose of SCH 23390 was chosen based on

the results of the hyperactivity tests because it produced

minimal effects on baseline activity but attenuated MDMA-

produced hyperactivity.

A recurring series comprised of baseline and test days

were used. At least 2 days of baseline testing were inter-

spersed between tests of the antagonist effect. SCH 23390

was administered only when there were at least two prior

and consecutive baseline tests during which the number of

responses did not vary by more than 20%.

Initially, the dose of MDMA available for self-adminis-

tration was 0.5 mg/kg/infusion. Once the effect of SCH

23390 on responding maintained by this dose of MDMA

was determined, the MDMA dose was either increased or

decreased for individual subjects and the effect of the

antagonist on responding maintained by this new dose of

MDMAwas assessed. The effect of SCH 23390 on respond-

ing maintained by 0.5, 1.0 and 2.0 mg/kg/infusion MDMA

was assessed in all rats (n = 6) and the effect on responding
maintained by 0.25 mg/kg/infusion MDMAwas determined

in a subset of these rats (n = 5).

2.5. Drugs

Racemic MDMA HCl (ESR, Porirua, New Zealand) was

dissolved in a sterile 0.9% saline solution containing 3 U/ml

heparin. SCH 23390 (NIDA, USA) was dissolved in 0.9%

saline. Intravenous infusions were in a volume of 0.1 ml and

subcutaneous or intraperitoneal injections were in a volume

of 1 ml/kg. All drug doses refer to the salt.

2.6. Data analysis

Activity data were analyzed using a repeated-measures

ANOVA (Antagonist Dose�Time). The self-administration

data were analyzed using a two-way ANOVA to determine

the effect of antagonist dose on responses maintained by

various doses of MDMA. Analyses were conducted using

the SPSS statistical package (SPSS) version 11.0 for Win-

dows 2000.
3. Results

Fig. 1 shows the effect of SCH 23390 on MDMA-

produced hyperactivity as a function of dose and time.

The insert shows the total counts during the 60-min period

following the MDMA injection for groups that received

various doses of the antagonist. SCH 23390 produced a

dose-dependent decrease in MDMA-produced hyperactivity

[F(4,16) = 4.274, P < .05]. Post hoc analyses revealed that

decreases produced by doses equal to or greater than 0.02mg/

kg SCH 23390 were significant (P < .05). The interaction

between dose and time was also significant [F(44,253) =

2.457, P < .001] and post hoc analyses revealed that the



Fig. 3. Effects of SCH 23390 (0.02 mg/kg) on responding maintained by

various doses of MDMA. Symbols represent the mean number of responses

(F S.E.M.). * Indicates significant difference ( P< .05) from baseline rate

of responding.
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decreases were produced primarily during the first 30 min

following the injection of MDMA (P < .05).

Fig. 2 shows the effect of SCH 23390 (0.02 mg/kg) or

the saline vehicle on baseline activity levels. For both

groups, activity levels are initially high and decrease pro-

gressively throughout the session. Activity levels of the

SCH 23390 group were comparable to activity levels of the

control group and there was no significant decrease as a

result of antagonist treatment [F(1,14) = 0.105, NS].

Fig. 3 shows the effect of SCH 23390 (0.02 mg/kg) on

active lever responding maintained by a range of self-admin-

istered MDMA doses. Inactive lever responding remained

low for all treatment conditions and for clarity, these data are

not presented. ANOVA revealed a significant interaction

between MDMA and SCH 23390 dose [F(3,19) = 5.051,

P < .01]. Simple analyses revealed that responding main-

tained by 0.25 mg/kg/infusion MDMA was attenuated by

SCH 23390 [F(1,4) = 9.153, P < .05], whereas responding

maintained by 1.0 mg/kg/infusion MDMA [F(1,5) = 13.811,

P < .05] and 2.0 mg/kg/infusion MDMA [F(1,5) = 23.616,

P < .005] was increased by SCH 23390.
4. Discussion

MDMA-produced hyperactivity was attenuated in a

dose-dependent manner by pretreatment with SCH 23390.

Effective doses of SCH 23390 were lower than those

required to produce a general disruption of motor activity

(present results; Millan et al., 2001; Meyer et al., 1993;

Piggins and Merali, 1989), suggesting a specific effect and

supporting the hypothesis that dopaminergic mechanisms

underlie MDMA-produced hyperactivity (Gold et al., 1989;

Kehne et al., 1996).
The reinforcing effects of MDMA were also attenuated

by pretreatment with a low dose of the D1-like antagonist.

Pretreatment with SCH 23390 produced a rightward shift in

the dose–response curve for MDMA self-administration.

The development and maintenance of drug-taking in

humans can be predicted on the basis of self-administration

by laboratory animals. Therefore, these findings suggest that

use and abuse of MDMA should also be dependent on

dopaminergic mechanisms. Consistent with this hypothesis,

drug-produced well-being and euphoria were decreased by

pretreatment with the dopamine D2-like antagonist, halo-

peridol (Liechti and Vollenweider, 2000).

During self-administration training and testing, rats re-

ceived substantial exposure toMDMA. Repeated exposure to

MDMA produces effects on brain chemistry that might play a

role in the ability of MDMA to increase synaptic dopamine

and produce positively reinforcing effects that maintain self-

administration. It is well documented that exposure to

MDMA produces toxicity in central serotonergic systems

(Reneman et al., 2001; Ricaurte et al., 2000; Schmidt and

Kehne, 1990; Battaglia et al., 1988; Schenk et al., 2003a,b).

There are complex interactions between serotonin and dopa-

mine but several studies have shown that self-administration

of cocaine (Czoty et al., 2002; Fletcher et al., 2002a; Loh and

Roberts, 1990), morphine (Dworkin et al., 1988) and am-

phetamine (Leccese and Lyness, 1984) was altered following

serotonin depletion, presumably as a result of decreased

serotonin modulation of dopamine.

It has also been reported that exposure to MDMA

produced a persistent decrease in the density of 5-HT2c

receptors (McGregor et al., 2003). This might also contrib-

ute to the ability of MDMA to increase synaptic dopamine

because activation of 5-HT2c receptors decreased dopamine

release (Filip and Cunningham, 2002; Blackburn et al.,

2002; Bonaccorso et al., 2002; Di Giovanni et al., 2000).

Following acute MDMA administration, increases in 5-HT

and the resulting activation of 5-HT2c receptors (Gudelsky

et al., 1994) might be expected to limit MDMA-produced

increased dopamine. Following repeated exposure, howev-

er, this inhibitory effect might be less influential because of

decreased 5-HT2c receptor densities. The resulting disinhi-

bition would explain the sensitized dopamine response

produced following repeated MDMA exposures (Kalivas

et al., 1998). This sensitized neurochemical response would

be expected to maintain MDMA self-administration and

produce cross-sensitization in the behavioral effects of

MDMA and other indirect dopamine agonists (Cole et al.,

2003; Itzhak et al., 2003; Schenk et al., 2003a,b; Fletcher et

al., 2001; Kalivas et al., 1998; Morgan et al., 1997; Call-

away and Geyer, 1992).
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